
The jsonparse package
A handy way to parse, store and access JSON data from files or strings in
LaTeX documents

Jasper Habicht *

Version 1.5.1, released on 5 May 2025

1 Introduction

Hello guys, I am Jason, the JSONparsing horse. JSONdata ismy favorite thing to parse! But I found
that converting JSON to TeX can be a bit tricky. Therefore, I created this package which I am happy
to introduce to you.

The jsonparse package provides a handy way to read in JSON data from files or strings in
LaTeX documents, parse the data and store it in a user-defined token variable. The package allows
accessing the stored data via a JavaScript-flavored syntax.

Thepackage is continuously being tested, but bugs cannot be ruledout. Theauthor is grateful for
reporting any bugs via GitHub at https://github.com/jasperhabicht/jsonparse/
issues. A site for asking questions about the package and for suggestions for improvement is
available at https://github.com/jasperhabicht/jsonparse/discussions.

2 Loading the package

To install the package, copy the package file jsonparse.sty into the working directory or into
the texmf directory. After the package has been installed, the jsonparse package is loaded by
calling \usepackage{jsonparse} in the preamble of the document.

Thepackage canbeusedwithPDFLaTeX, LuaLaTeXorXeLaTeX. It should alsoworkwithupTeX.
The package does not load any dependencies, but it needs a LaTeX kernel of 1 June 2022 or newer. It
is recommended to use the package with an up-to-date TeX distribution.

debug

The package can be loaded with the option debug . It will then output to the log file every instance
of a string, a boolean (true or false) value, a null value, a number as well as the start and end of every

* E-mail: mail@jasperhabicht.de. I am grateful to Joseph Wright, Jonathan P. Spratte and David Carlisle who helped me
navigating the peculiarities of TeX and optimizing the code. Jason, the JSON parsing horse: © 2024–2025 Hannah Klöber.

1

https://github.com/jasperhabicht/jsonparse/issues
https://github.com/jasperhabicht/jsonparse/issues
https://github.com/jasperhabicht/jsonparse/discussions
mailto:mail@jasperhabicht.de

object and the start and end of every array that is found while parsing the JSON string or JSON file.
It will also show the relevant keys associated to the values. If the key skip structures is not
set (or not set to true), objects and arrays will be shown as values to the respective keys, includ-
ing the pseudo key . (or the string defined using the key separator/child) that represents the
complete JSON string.

Let us assume that the following JSON data is parsed:

{
"string" : "a" ,
"boolean true" : true ,
"boolean false" : false ,
"null" : null ,
"number" : "number" : -1.1e-1 ,
"array" : ["a" , "b" , "c"]

}

This will then result in the following output to the log:

Parsing JSON ...
(obj begin)
(key) string:
(str) a

(key) boolean true:
(tru) true

(key) boolean false:
(fal) false

(key) null:
(nul) null

(key) number:
(num) -1.1e-1

(arr begin)
(key) array[0]:
(str) a

(key) array[1]:
(str) b

(key) array[2]:
(str) c

(key) array:
(arr) ["a" , "b" , "c"]

(arr end)
(key) .:
(obj) { "string" : "a" , "boolean true" : true , "boolean false" :
false , "null" : null , "number" : "number" : -1.1e-1 , "array" :
["a" , "b" , "c"] }

(obj end)
JSON parsing done.

The debug key can be set either as package option or using \JSONParseSet . It can also be
set locally as option to the commands \JSONParse and \JSONParseFromFile .

3 General remarks of the parsing procedure

In general, the packagewill read and store the JSON source and data as string, whichmeans that all
characters have category code 12 (“other”), except for spaces and (horizontal) tabs which have cate-
gory code 10 (“space”). The \endlinechar value is set to−1which means that linefeeds and car-

2

riage returns are ignored by TeX.These settings are in line with the JSON specification of handling
whitespace. Furthermore, if PDFLaTeX is used, the upper-half of the 8-bit range is set to “active”.
Additionally, JSON defines a small set of escape sequences and in order to be able to process these,
the category code of the backslash is set to 0 (“escape”).

During parsing, the package identifies JSON objects, arrays, strings, numbers, boolean values
and null values from the JSON data. It stores all these values together with the relevant keys in
a property list. Once the parsing process is done, every value can be retrieved from the property
list by calling the relevant key. The package ignores whitespace in the JSON data. In general, the
package accepts any valid JSON data. If a key is defined multiple times, the latter definition will
silently overwrite the former.

4 Escaping and special treatment of the input

JSON strings cannot contain the two characters " and \ . These two characters need to be escaped
with a preceding backslash (\). This package therefore redefines locally the TeX control symbols
\" , \/ , \\ , \b , \f , \n , \r , \t and \u . These control symbols areprevented fromexpanding
during parsing. For example, \" is first defined as \exp_not:N \" and only when typeset, \"
is expanded to " , which ensures that strings are parsed properly.

Similarly, the control symbol \/ expands eventually to / and \\ to \c_backslash_str (i. e.
a backslash with category code 12).

The escape sequence \u followed by a hex value consisting of four digits eventually expands to
\codepoint_generate:nn that creates the character represented by the relevant four hex digits
with category code 12 (“other”). If two escape sequences \u with four hex digits each follow each
other and together represent a Unicode surrogate pair, this surrogate pair is converted into the rel-
evant Unicode codepoint.

The JSON escape sequences \b , \f , \n , \r and \t eventually expand to token variables of
which the contents can be set using the relevant replace key. See more on setting options below
in section 7.

It is possible to insert TeXmacros to the JSON source that will eventually be parsed when type-
setting. Backslashes of TeX macros need to be escaped by another backslash. The TeX macros \"
and \\ must be escaped twice in the JSON source so that they become \\\" and \\\\ respec-
tively.

\${‹token variable name›}{‹key›}

Using the control sequence \$, it is possible to nest JSON strings into each other. Used inside the
\JSONParse command, the control sequence takes two arguments delimited by curly braces. The
first argument represents the name of the token variable that holds the parsed JSON data where
the inserted JSON string should be taken from. The second argument sets the key that should be
selected. The following example shows a simple use case:

c

\JSONParse{\myJSONdataA}{
{ "a" : { "b" : "c" } }

}

\JSONParse{\myJSONdataB}{
{ "d" : \${myJSONdataA}{a} }

}

\JSONParseValue{\myJSONdataB}{d.b}

! Note that the control sequence \$ is replaced by the value exactly. Therefore, if the value hap-
pens to be a string, the control sequence \$ should be placed between quotation marks (") in or-

3

der for the resulting string to be valid JSON. The control sequence \$ is only available inside the
\JSONParse command, but not inside the \JSONParseFromFile command.

escape={all}
escape={none}
escape={number sign}
escape={dollar sign}
escape={percent sign}
escape={ampersand}
escape={circumflex accent}
escape={low line}
escape={tilde}

The key escape can be used to convert characters that don’t require escaping in JSON but in TeX
into the relevant TeX escape sequences. Apart from the backslash and curly braces that need to be
escaped anyways, these are the number sign, the dollar sign, the percent sign, the ampersand, the
circumflex accent, the low line and the tilde. The characters can be selected individually separated
by a comma (for example escape={dollar sign, circumflex accent, low line} . With
escape={all} , all escaping sequences are selected, with escape={none} , none is selected.

The naming of the relevant characters follows their Unicode names. However, hash exists
as alias for number sign , dollar as alias for dollar sign , percent for percent sign ,
circumflex for circumflex accent and underscore for low line .

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParseValue , \JSONParseArrayUse and \JSONParseArrayMapFunction .

rescan
rescan={‹boolean›}

The key rescan can be used to activate and deactivate rescanning of the output. This key is ac-
tive per default. Rescanning converts all tokens to their default category codes and TeX control se-
quences are expanded before typesetting. Further, during the rescanning process, JSON escape
sequences are replaced and characters that don’t require escaping in JSON but in TeX are replaced
by the relevant TeX escape sequences.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParseValue , \JSONParseArrayUse and \JSONParseArrayMapFunction .

5 Main user commands

The first part of this section describes the basic commands for parsing JSON data and retrieving
values from parsed JSON data. The second part of this section describes the various commands for
handling arrays provided by this package. Commandsmarkedwith a star () are fully expandable.

5.1 Basic parsing commands

\JSONParse[‹options›]{‹token variable›}{‹JSON string›}

The command \JSONParse is used to parse a JSON string and globally store the parsed result in
a token variable (a property list). The second argument takes the name of the token variable that is
created by the command. The third argument takes the JSON string to be parsed.

For example, using \JSONParse{\myJSONdata}{ { "key" : "value" } } , the relevant
JSON string will be parsed and the result stored in the token variable \myJSONdata as property
list. In this case, the property list only consists of two entries of which one has the key key and

4

the value value and the other represents the whole object. Once the JSON string has been parsed,
the command \JSONParseValue{\myJSONdata}{key} , for example, can be used to extract the
relevant value from this property list (see the description below).

The first optional argument of the command \JSONParse can be used to pass options to the
command that are then applied locally.

! Thecommand \JSONParse takes the JSON string as verbatim argumentwhichmeans that the
command can’t be used inside amacro argument. One consequence of this for example is thatwhen
using the beamer document class, the command \JSONParse canonly beused inside the frame
environment if the fragile option is set.

\JSONParseFromFile[‹options›]{‹token variable›}{‹JSON file›}

The command \JSONParseFromFile is used to parse a JSON file and store the parsed result in
a token variable (a property list). It works the same way as \JSONParse , but instead of a JSON
string, it takes as third argument the path to the JSON file relative to the working directory.

\JSONParseValue[‹options›]{‹token variable›}{‹key›}

The command \JSONParseValue is used to select values from the token variable (property list)
that has been created using the commands \JSONParse or \JSONParseFromFile . The second
argument takes the token variable that holds the parsed JSON data. The third argument takes the
key to select the relevant entry from the parsed JSON data using JavaScript syntax.

If the JSON string { "key" : "value" } is parsed into the token variable \myJSONdata ,
using \JSONParseValue{\myJSONdata}{key} would extract the value associated with the key
key , which in this case is value , and typeset it to the document.

Nested objects and arrays are assigned keys that adhere to JavaScript syntax. For example, if
the JSON string { "outer_key" : { "inner_key" : "value" } } is parsed into the token
variable \myJSONdata , to select the value associated with the key inner_key , the command
\JSONParseValue{\myJSONdata}{outer_key.inner_key} can be used. To give an example
for anarray, the command \JSONParseValue{\myJSONdata}{key[0]} selects thefirst valueof
the array associated with the key key in the JSON string { "key" : ["one" , "two"] } .

The first optional argument can be used to pass options to the command, such as escape or
rescan , that are then applied locally. When the option rescan is used, the token list is rescanned
before it is typeset (which means that all category codes that may have been changed before are set
to the default values). This is the default behavior. If rescanning is not desired, pass the option
rescan=false to the command.

When a key is associatedwith an object or array (and the key skip structures is not set), the
whole object or array is output as JSON string. Additionally, the special key . (or the string defined
using the key separator/child) returns the whole JSON object (or the whole JSON array if the
JSONdata only consists of one array) as stringwhere all characters (except for spaces and tabs) have
category code 12 (“other”).

! The command \JSONParseValue is not expandable and can therefore not be used as argu-
ment of certain other arguments where expansion is needed. In such cases, the expandable com-
mand \JSONParseExpandableValue should be used.

store in={‹token variable›}

The command \JSONParseValue accepts the key store in that can be used to store the return
value in another token variable. If the token variable given as option to the store in key has not
yet been defined, it will be created by this command.

The token list returned by this command is a string variable where all characters have category
code 12 (“other”), except for spaces and (horizontal) tabs that have category code 10 (“space”).

5

The key store in can be used together with the key rescan to rescan the return value be-
fore storing it in the token variable. This means that the value stored in the token list will have the
category codes TeX uses per default. Option settings such as the escape option are taken into
consideration during the rescan process.

This can, for example, be necessary when numbers stored in the JSON data in scientific format
should be formatted using the siunitx package. The rescan is needed here, because otherwise
the character e would have the wrong category code and would hence not be recognized by the
formatting parser as exponentmarker. Let us assume the key number in some JSON source parsed
into the token variable \myJSONnumber represents the value -1.1e-1 , then the following could
be used to format the output:

−1.1× 10−1

\JSONParseValue
[rescan, store in=\mynumber]
{\myJSONnumber}{number}

\num{\mynumber}

The key store in can also be set using \JSONParseSet . Calling store in={} will reset
it to its default (empty) value.

\JSONParseExpandableValue{‹token variable›}{‹key›}

Whole objects or arrays can be output as JSON string for further use in other macros using the ex-
pandable command \JSONParseExpandableValue . The value that is returned by this command
is typically a stringvariablewhereall charactershave category code 12 (“other”), except for spacesand
(horizontal) tabs that have category code 10 (“space”). This should be kept inmind if string compar-
isons should bemade. A comparison against a token listwith the default category codes used by TeX
won’t work, since letters will have category code 11 (“letter”), but it is possible to use \detokenize
to set the category codes of the token list in such a way that the comparison works.

For example, if the JSON string { "key" : "value" } has been parsed into the token vari-
able \myJSONdata , the command \JSONParseExpandableValue{\myJSONdata}{key} will
have the same meaning as \detokenize{value} and expand to a token list with all characters
having category code 12 (“other”).

\JSONParseKeys[‹options›]{‹token variable›}{‹key›}

The command \JSONParseKeys is used to get all top-level keys of a JSON object as JSON array
and return this array as string where all characters (except for spaces and tabs) have category code
12 (“other”). Thefirst argument of the command takes the token variable that holds the parsed JSON
data. The second argument takes the key to select the relevant entry from the parsed JSON data
using JavaScript syntax.

The command \JSONParseKeys accepts as option the key store in to get all top-level keys
of a JSON object as JSON array and parse this array into a token variable. Note that the return value
is stored as property list, not as string. The token variable to store the keys as array is created if it
does not exist.

As an example, let us assume that the following JSON data structure is parsed into the token
variable \myJSONdata :

6

{
"array" : [
{
"key_a" : "one" ,
"key_b" : "two"

} ,
{
"key_a" : "three" ,
"key_b" : "four"

}
]

}

Wecan then generate an array consisting of all keys of the object that is the first itemof the array
using \JSONParseKeys{\myJSONdata}{array[0]} . We can also generate an array consisting
of all top-level keys of the parsed JSON data using \JSONParseKeys{\myJSONdata}{.} where
. is the pseudo key representing the complete parsed JSON string. Note that in addition to the key
of an array, keys for each item of this array will be added to the array of keys:

["key_a","key_b"]
["array[0]","array[1]","array"]

\JSONParseKeys{\myJSONdata}{array[0]}

\JSONParseKeys{\myJSONdata}{.}

If we store such an array of keys in the token variable \myJSONkeys , we can for example access
the first item of this array of keys using \JSONParseValue{\myJSONkeys}{[0]} :

array[0]
\JSONParseKeys[store in=\myJSONkeys]

{\myJSONdata}{.}
\JSONParseValue{\myJSONkeys}{[0]}

Note that the underscores in the names of the keys can be printed without changing to math
mode in the above example because they are stored as stringswhere all characters (except for spaces
and tabs) have category code 12 (“other”).

\JSONParseFilter{‹token variable›}{‹token variable›}{‹key›}

Thecommand \JSONParseFilter is used to select a part (such as an object or an array) of a JSON
object or JSONarray andparse this into a token variable (a property list). Thefirst argument denotes
the token variable where the value should be stored into. The second argument of the command
takes the token variable that holds the parsed JSON data. The third argument takes the key to select
the relevant entry from the parsed JSON data using JavaScript syntax.

5.2 Commands for handling arrays

Thepackage offers a variety of commands that canbeused to process JSONarrays. Three commands
are provided to loop through arrays, \JSONParseArrayUse , \JSONParseArrayMapFunction
and \JSONParseArrayMapInline which offer different functionality for different use cases. All
three commands are implemented in a unique way and it should not be expected that what works
with one of these commands also works with another. The commands differ in various respects, for
example:

• With \JSONParseArrayUse and \JSONParseArrayMapInline , it is possible to store
the result in a token list for later use via the option key store in , but such is not possible

7

with \JSONParseArrayMapFunction .

• It is possible to store non-expandable commands (such as \emph or \textbf) in a token
list using \JSONParseArrayUse , but not using \JSONParseArrayMapInline .

\JSONParseArrayCount[‹options›]{‹token variable›}{‹key›}

Thecommand \JSONParseArrayCount takes as first argument a token variable holding a parsed
JSONstring or JSONfile and as second argument a key to select an array in the JSONdata. It returns
an integer representing the number of items contained in the selected array.

The command \JSONParseArrayCount accepts the use of the key store in to store the
number of items contained in the selected array in a token variable.

\JSONParseArrayUse[‹options›]{‹token variable›}{‹key›}[‹subkey›]{‹string›}

The command \JSONParseArrayUse is used to select all values from an array from a parsed
JSON string or JSONfile. The second argument takes the token variable that holds the parsed JSON
data. The first argument takes the key to select the relevant entry from the parsed JSON data using
JavaScript syntax. The third argument is optional and can be used to pass a subkey, i. e. a key that
is used to select a value for every item. The last argument takes a string that is inserted between all
values when they are typeset.

Let us again assume the following JSON data structure being parsed into the token variable
\myJSONdata :

{
"array" : [
{
"key_a" : "one" ,
"key_b" : "two"

} ,
{
"key_a" : "three" ,
"key_b" : "four"

}
]

}

When using \JSONParseArrayUse{\myJSONdata}{array}[key_a]{, } , ‘one, three’ is
then typeset to the document.

The first optional argument can be used to pass options to the command, such as escape or
rescan , that are then applied locally.

The command \JSONParseArrayUse accepts as option set in the optional argument the key
store in which takes a token variable into which the result of the command should be stored.
Storing the result of the mapped inline function can be helpful if JSON data should be reformatted
for use in another function.

8

one three

\JSONParseArrayUse[store in=\myJSONitems]
{\myJSONdata}{array}[key_a]{,}

\begin{tikzpicture}
\foreach \x [count=\i] in \myJSONitems {

\fill[blue] (\i,0) circle[radius=2pt]
node[above=5pt, black] {\x};

}
\end{tikzpicture}

\JSONParseArrayMapFunction[‹options›]{‹token variable›}{‹key›}[‹subkey›]
{‹command›}

The command \JSONParseArrayMapFunction works in a similar way and takes the same first
three arguments as the command \JSONParseArrayUse . However, instead of a string that is
added between the array items, it takes a command (a token list) as fourth argument. This com-
mand can be defined beforehand and will be called for every array item. Inside its definition, the
commands \JSONParseArrayIndex , \JSONParseArrayKey and \JSONParseArrayValue
can be used which are updated for each item and output the index, the key and the value of the cur-
rent item respectively. Note that these commands are defined globally to make accessing them as
easy as possible.

For example, let us assume the same JSONdata structure as defined above parsed into the token
variable \myJSONdata . Then, the following can be done:

• one

• three

\newcommand{\myJSONitem}{
\item \emph{\JSONParseArrayValue}

}

\begin{itemize}
\JSONParseArrayMapFunction{\myJSONdata}

{array}[key_a]{\myJSONitem}
\end{itemize}

It is possible to make use of multiple subkeys by passing them as a comma separated list as
third argument to the command. Inside the command that is called for every array item, the dif-
ferent keys and values can be access via commands numbered with uppercase Roman numerals
such as \JSONParseArrayKeyI , \JSONParseArrayKeyII , \JSONParseArrayKeyIII etc.
and \JSONParseArrayValueI , \JSONParseArrayValueII , \JSONParseArrayValueIII
etc.

We can extend the above example in the following way:

• one: two

• three: four

\newcommand{\myJSONitem}{
\item \emph{\JSONParseArrayValueI :}

\JSONParseArrayValueII
}

\begin{itemize}
\JSONParseArrayMapFunction{\myJSONdata}

{array}[key_a,key_b]{\myJSONitem}
\end{itemize}

9

code before={‹code›}
code after={‹code›}

The \JSONParseArrayMapFunction command also accepts the options code before and
code after . These options can be used to place code before and after the output that is generated
by the command called for every array item, for example for typesetting tabular contents.

Typesetting the above example in a tabular way can be achieved as follows:

key a key b
one two
three four

\newcommand{\myJSONitem}{
\JSONParseArrayValueI &
\JSONParseArrayValueII \\

}

\JSONParseArrayMapFunction[
code before={

\begin{tabular}{ c c }
\textbf{key a} &
\textbf{key b} \\ \hline

},
code after={

\hline
\end{tabular}

}
]{\myJSONdata}{array}[key_a,key_b]

{\myJSONitem}

Finally, the first optional argument of the command can be used to pass options to the com-
mand, such as escape or rescan , that are then applied locally.

\JSONParseArrayMapInline[‹options›]{‹token variable›}{‹key›}{‹inline function›}

Thecommand \JSONParseArrayMapInline takes as firstmandatory argument a token variable
holding a parsed JSON string or JSON file and as second mandatory argument a key to select an
array in the JSON data. The last argument can contain any code where the index of the current item
is represented by #1 . The code may contain another instance of \JSONParseArrayMapInline ,
which means that the command can be nested.

Using the above example, the mechanism could be implemented as follows:

• one

• three

\begin{itemize}
\JSONParseArrayMapInline{\myJSONdata}

{array}{
\item \JSONParseValue{\myJSONdata}
{array[#1].key_a}

}
\end{itemize}

Making use of the commands \JSONParseKeys and \JSONParseValue together with the
store in option, keys and values can be accessed. Due to the fact that cells create scopes, we
need to repeat the part of the code that selects the current key:

10

key_a: one
key_b: two

key_a: three
key_b: four

\JSONParseArrayMapInline{\myJSONdata}
{array}{

\JSONParseKeys[store in=\mykeys]
{\myJSONdata}{array[#1]}

\JSONParseValue
[store in=\mykeya, rescan=false]
{\mykeys}{[0]}

\JSONParseValue
[store in=\mykeyb, rescan=false]
{\mykeys}{[1]}

\emph{\mykeya :}
\JSONParseValue{\myJSONdata}

{array[#1].\mykeya}\par

\emph{\mykeyb :}
\JSONParseValue{\myJSONdata}

{array[#1].\mykeyb}\par\bigskip
}

Note that the underscores in the names of the keys can be printed without changing to math
mode in the above example by switching off rescanning via rescan=false . This is possible be-
cause all JSONdata is stored as stringwhere all characters (except for spaces and tabs) have category
code 12 (“other”).

The command \JSONParseArrayMapInline accepts as option set in the optional argument
the key store in which takes a token variable intowhich the result of themapped inline function
should be stored. Refer to the relevant explanations to command \JSONParseArrayUse above
for more information.

! In order for the result to be stored in a token variable, the inline function needs to be fully ex-
pandable. For example, it is not possible to use the command \JSONParseValue in the code of the
inline function while using the command \JSONParseExpandableValue is allowed. Note that
the command \JSONParseArrayMapInline itself is not expandable which means that nested
use of this command prevents storing the result in a token variable.

Storing the result of the mapped inline function can be helpful if JSON data should be refor-
matted for use in a plotting functions. An example for a use case with PGFplots is shown below. In
this example, the parsed JSON string { "data": [[0,0], [1,-1], [2,1]] } was stored
in the token variable \myJSONplotdata .

11

0 1 2

−1

0

1

\JSONParseArrayMapInline
[store in={\myJSONplotcoords}]
{\myJSONplotdata}{data}{

(
\JSONParseExpandableValue

{\myJSONplotdata}{data[#1][0]}
,
\JSONParseExpandableValue

{\myJSONplotdata}{data[#1][1]}
)

}

\begin{tikzpicture}
\begin{axis}

\addplot coordinates
{\myJSONplotcoords};

\end{axis}
\end{tikzpicture}

6 Externalizing parsed JSONdata

Parsing large and complex JSON files can take quite a while. In order to speed up follow-up com-
pilation runs, this package provides a way to store parsed JSON data for future use. Once a file
for externalization has been created, the package will try to load the data from this file instead of
parsing the JSON data again.

externalize
externalize={‹boolean›}

With the key externalize set (or set to true), a file will be created in the working directory that
stores the externalization of the parsed JSON data. The file name gets the extension .jsonparse .
The file name is created automatically and consists of the name of the current file followed by an
underscore and the name of the token variable where the JSON data is stored into. If a file with the
same name and file extension already exists, an error will be issued.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

externalize prefix={‹string›}

With the key externalize prefix , a prefix can be defined that is added to the file name. Per
default this is an empty string.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

externalize file name={‹token list›}

The key externalize file name sets the schema for the file name. The default schema is as
follows:

\l_jsonparse_externalize_prefix_str \c_sys_jobname_str
\c_underscore_str \l_jsonparse_current_prop_str

12

The token variable \l_jsonparse_externalize_prefix_str contains the prefix that is
set using the key externalize prefix . \c_sys_jobname_str holds the name of the cur-
rent file (the current job name), \c_underscore_str is an underscore and the token variable
\l_jsonparse_current_prop_str contains the name of the property list where the relevant
JSON data is stored into.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

\JSONParsePut{‹token variable›}{‹key›}[‹JSON string›]

Thecommand \JSONParsePut is used by the externalization procedure to re-read already parsed
JSON data to the main file. It just adds a key-value pair to the property list (where the value part is
read as string). Hence, it can also be used to append more entries to an already existing property
list containing parsed JSON data.

7 Changing parsing and typesetting behavior via option keys

Thepackage provides a set of keys that can be set to change the separators used to select the relevant
value in the JSON structure, the output that is generated from the JSONdata aswell as other things.

\JSONParseSet{‹options›}

The command \JSONParseSet can be used to specify options via key-value pairs (separated by
commas). Keys that are presented here as a subkey (i. e. preceded by another key and a slash such
as key/subkey) can also be set using the syntax key={subkey} andmultiple subkeys belonging
to one key can be combined using commas as separator. Several user commands allow to pass keys
directly which are then applied locally.

Not every key takes effect in every situation. Some keys affect the parsing procedure and thus
need to be set before parsing. Some keys affect the typeset result and some keys only affect the
typeset result when used in combination with specific commands.

7.1 Keys affecting the parsing procedure

Informationabout thekey externalize aswell as about the relatedkeys externalize prefix
and externalize file name can be found above in section 6.

separator/child={‹string›}
separator/array left={‹string›}
separator/array right={‹string›}

With the key separator/child , the separator for child objects that is used in the key to select a
specific value in the JSON data structure can be changed. Per default, the child separator is a dot
(.).

With the keys separator/array left and separator/array right , the separators for
arrays that are used in the key to select a specific value in the JSON data structure can be changed.
Per default, the separators are square brackets ([and]). Changing these separators to curly
braces ({}) is not supported due to their grouping function in TeX.

Changing the separators canbeuseful if keys in the JSONstructure alreadyuse these characters.
These settings take place already during parsing.

These keys can be set using \JSONParseSet . They can also be set locally as option to the com-
mands \JSONParse and \JSONParseFromFile . When set using \JSONParseSet , these keys
only take effect when set before parsing.

13

zero-based
zero-based={‹boolean›}

If the key zero-based is set (or explicitly set to true), the index of array items startswith zero. If
set to false, the indexing starts with one instead. Per default, the package uses zero-based indexing
to match JavaScript notation. This setting affects indexing already during parsing.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile . When set using \JSONParseSet , this key only takes
effect when set before parsing.

validate numbers
validate numbers={‹boolean›}

If set to false , the key validate numbers omits an internal validation of numerical expres-
sions against the JSON specification for numbers. Turning off this feature can increase the parsing
speed if many numbers are to be parsed. Validations are carried out per default.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

skip structures
skip structures={‹boolean›}

If set or explicitly set to true , the key skip structures deactivates the storage of arrays and
objects as values to the relative keys. Also, it omits storing of the whole JSON string as value with
the pseudo key . (or the string defined using the key separator/child). Skipping structures is
deactivated per default. Setting this key to true can speed up the parsing process and circumvent
memory limitations.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

7.2 Keys affecting the typesetting

Some keys that change the typesetting behavior are explained in other parts of this documentation.

• Information about the keys escape and rescan can be found above in section 4.

• Information about the key store in can be found above in the context of the description
to the command \JSONParseValue as well as in the description to \JSONParseKeys ,
\JSONParseArrayCount , \JSONParseArrayUse and \JSONParseArrayMapInline .

• Information about the keys code before and code after can be found above in the de-
scription to the command \JSONParseArrayMapFunction above.

keyword/true={‹string›}
keyword/false={‹string›}
keyword/null={‹string›}

With the keys keyword/true , keyword/false and keyword/null , the string that is typeset
for true, false andnull values can be changed. Thedefault strings that are typeset are true , false
and null respectively. Only strings should be used as replacement. These replacements take place
already during parsing.

These keys can be set using \JSONParseSet . They can also be set locally as option to the com-
mands \JSONParse and \JSONParseFromFile . When set using \JSONParseSet , these keys
only take effect when set before parsing.

14

replace/backspace={‹token list›}
replace/formfeed={‹token list›}
replace/linefeed={‹token list›}
replace/carriage return={‹token list›}
replace/horizontal tab={‹token list›}

These keys can be used to set the replacement for the JSON escape sequences \b (backspace), \f
(formfeed), \n (linefeed), \r (carriage return) and \t (horizontal tab). The default replacement
is a space in each case. These replacements take place only during typesetting.

! Note that commands such as \par needs to bemasked (for example by using a copy created via
\let) in order to be used as replacement.

These keys can be set using \JSONParseSet . They can also be set locally as option to the com-
mands \JSONParseValue , \JSONParseArrayUse and \JSONParseArrayMapFunction .

global
global={‹boolean›}

The key global can be used together with the key store in to globally set the value of the rele-
vant token list. Detailed information about the key store in can be above.

8 Deprecated commands

The following commands displayed in red boxes on the left have been deprecated and the relevant
replacement displayed in green box right to it should be used. To simplify the representation of the
code and clarify how arguments are supposed to be used, numbers are used to identify the argu-
ments.

\JSONParseSetValue
{‹1›}{‹2›}{‹3›}

\JSONParseValue[store in={‹1›},
rescan=false]{‹2›}{‹3›}

\JSONParseSetRescanValue
{‹1›}{‹2›}{‹3›}

\JSONParseValue[store in={‹1›},
rescan]{‹2›}{‹3›}

\JSONParseSetKeys
{‹1›}{‹2›}{‹3›}

\JSONParseKeys
[store in={‹1›}]{‹2›}{‹3›}

\JSONParseSetArrayCount
{‹1›}{‹2›}{‹3›}

\JSONParseArrayCount
[store in={‹1›}]{‹2›}{‹3›}

\JSONParseArrayValues
[‹1›]{‹2›}{‹3›}[‹4›]{‹5›}

\JSONParseArrayUse
[‹1›]{‹2›}{‹3›}[‹4›]{‹5›}

\JSONParseArrayValuesMap
[‹1›]{‹2›}{‹3›}[‹4›]{‹5›}
[‹6›][‹7›]

\JSONParseArrayMapFunction
[‹1›, code before={‹6›},

code after={‹7›}]
{‹2›}{‹3›}[‹4›]{\‹5›}

\x{‹1›}{‹2›} \${‹1›}{‹2›}

15

The command \JSONParseArrayMapFunction takes as last argument a command denoting
the relevant mapping function including the preceding backslash, while the deprecated command
\JSONParseArrayValuesMap required the name of this function without preceding backslash.

To ensure backward compatibility, the deprecated commands are still supported, but their use
is not recommended. Thecommands \JSONParseSetRescanValue and \JSONParseSetKeys
will locally set the relevant token variable.

9 L3 commands

The following token variables and commands are provided for defining user functions by package
authors. For the conditional functions described below, apart from the variant that provides a true
anda false branch, the andvariants that only provide anargument for the true or for the false branch
respectively are defined as well which is indicated by the letters TF printed in italics. Commands
marked with a star () are fully expandable.

\l_jsonparse_externalize_prefix_str

The token variable \l_jsonparse_externalize_prefix_str holds the prefix for externaliza-
tion file names as defined by the user via the key externalize prefix .

\l_jsonparse_current_prop_str

The token variable \l_jsonparse_current_prop_str holds the name of the property list as
defined by the user when calling the command \JSONParse or \JSONParseFromFile .

\g_jsonparse_entries_prop

The token variable \g_jsonparse_entries_prop holds as property list all elements of a JSON
data structure that was parsed by the command \jsonparse_parse:n .

\jsonparse_parse:n {‹JSON string›}
\jsonparse_parse:o {‹JSON string›}
\jsonparse_parse:e {‹JSON string›}

The command \jsonparse_parse:n takes as argument a JSON string and populates the token
variable (property list) \g_jsonparse_entries_prop with key-value pairs representing all ele-
ments of the JSON data structure represented by this string. This command does not escape the
input in any way.

\jsonparse_parse_to_prop:Nn ‹token variable› {‹JSON string›}
\jsonparse_parse_to_prop:No ‹token variable› {‹JSON string›}
\jsonparse_parse_to_prop:Ne ‹token variable› {‹JSON string›}

The command \jsonparse_parse_to_prop:Nn creates the token variable given as the first ar-
guments as property list and, after having called \jsonparse_parse:n using the second argu-
ment, globally sets this newly created property list equal to \g_jsonparse_entries_prop . If
escaping is activated, this command will pre-process the input according to the selected escaping
mode before forwarding it to \jsonparse_parse:n . See more on escaping above in section 4.

16

\jsonparse_parse_to_prop_local:Nn ‹token variable› {‹JSON string›}
\jsonparse_parse_to_prop_local:No ‹token variable› {‹JSON string›}
\jsonparse_parse_to_prop_local:Ne ‹token variable› {‹JSON string›}

Thecommand \jsonparse_parse_to_prop_local:Nn works in the very sameway as the com-
mand \jsonparse_parse_to_prop:Nn , but the property list is set locally.

\jsonparse_parse_keys:NN ‹token variable› ‹string variable›

Thecommand \jsonparse_parse_keys:NN processes the token variable given as the first argu-
ments as property list and selects all top-level keys which are then stored in the string variable as
JSON array. The pseudo key . (or the string defined using the key separator/child) to select
the complete JSON data is ignored. If the JSON data is an array, the indices (wrapped into the sep-
arators defined by separator/array left and separator/array right) of the items are
used as keys.

\jsonparse_rescan:n {‹JSON value›}
\jsonparse_rescan:e {‹JSON value›}

The command \jsonparse_rescan:n rescans the JSON value given in the argument. Rescan-
ning converts all tokens to their default category codes and TeX control sequences are expanded.
Further, during the rescanning process, JSON escape sequences are replaced and characters that
don’t require escaping in JSON but in TeX are replaced by the relevant TeX escape sequences.

\jsonparse_set_rescan:Nn ‹token variable› {‹JSON value›}
\jsonparse_set_rescan:Ne ‹token variable› {‹JSON value›}

The command \jsonparse_set_rescan:Nn rescans the JSON value given in the second argu-
ment and stores the result in the token variable specified in the second argument.

\jsonparse_gset_rescan:Nn ‹token variable› {‹JSON value›}
\jsonparse_gset_rescan:Ne ‹token variable› {‹JSON value›}

The command \jsonparse_gset_rescan:Nn rescans the JSON value given in the second argu-
ment and stores the result globally in the token variable specified in the second argument.

\jsonparse_put_right_rescan:Nn ‹token variable› {‹JSON value›}
\jsonparse_put_right_rescan:Ne ‹token variable› {‹JSON value›}

The command \jsonparse_put_right_rescan:Nn rescans the JSON value given in the second
argument and adds the result to the end of the token variable specified in the second argument.

\jsonparse_gput_right_rescan:Nn ‹token variable› {‹JSON value›}
\jsonparse_gput_right_rescan:Ne ‹token variable› {‹JSON value›}

The command \jsonparse_gput_right_rescan:Nn rescans the JSON value given in the sec-
ond argument and adds the result globally to the end of the token variable specified in the second
argument.

\jsonparse_filter:Nn ‹token variable› {‹key›}

17

Thecommand \jsonparse_filter:Nn processes the token variable given as the first arguments
as property list and filters it according to the key given as second argument. Filtering means that
for every entry in the property list, the key of this entry is compared against the key given to the
command. If the key in the property list starts with the given key, the matching part is removed
from the key in the property list. If the keys do notmatch, the entry is completely removed from the
property list. If the second argumentmatches the pseudo key . (or the string defined using the key
separator/child) exactly, the complete property list except for this key is returned.

\jsonparse_array_count:NN ‹token variable› ‹integer variable›

The command \jsonparse_array_count:NN processes the token variable given as the first ar-
guments as property list and, assuming that it is an array, counts its items and stores the result in
the integer variable. If the token variable does not expand to a key that represents an array item,
that is if the key does not start with the character defined by separator/array left , the com-
mand will return an error. The command \JSONParseArrayCount serves as a wrapper of this
command.

\jsonparse_if_num:nTF {‹string›} {‹true code›} {‹false code›}
\jsonparse_if_num:VTF {‹string›} {‹true code›} {‹false code›}
\jsonparse_if_num_p:n {‹string›}
\jsonparse_if_num_p:V {‹string›}

Theexpandable conditional function \jsonparse_if_num:nTF checkswhether a string is a valid
JSON number according the relevant specification. It executes the true code if the string is a valid
JSON number and the false code if not. The variants that only provide an argument for the true or
false case work accordingly. The command \jsonparse_if_num_p:n returns a boolean true or
false (i. e. \c_true_bool or \c_false_bool).

\jsonparse_unicode_if_high_surrogate:nTF {‹codepoint›}
{‹true code›} {‹false code›}

\jsonparse_unicode_if_high_surrogate:eTF {‹codepoint›}
{‹true code›} {‹false code›}

\jsonparse_unicode_if_high_surrogate_p:n {‹codepoint›}
\jsonparse_unicode_if_high_surrogate_p:e {‹codepoint›}

Theexpandable conditional function \jsonparse_unicode_if_high_surrogate:nTF checks
whether the codepoint entered as argument (an integer that can be hexadecimal if preceded by ")
is in the range of "D800 and "DBFF whichmeans that it is the first part of a surrogate pair (a high
surrogate). The conditional function executes the true or false code depending on the evaluation.
The variants that only provide an argument for the true or false case work accordingly. The com-
mand \jsonparse_unicode_if_high_surrogate_p:n returns a boolean true or false (i. e.
\c_true_bool or \c_false_bool).

\jsonparse_unicode_if_low_surrogate:nTF {‹codepoint›}
{‹true code›} {‹false code›}

\jsonparse_unicode_if_low_surrogate:eTF {‹codepoint›}
{‹true code›} {‹false code›}

\jsonparse_unicode_if_low_surrogate_p:n {‹codepoint›}
\jsonparse_unicode_if_low_surrogate_p:e {‹codepoint›}

The expandable conditional function \jsonparse_unicode_if_low_surrogate:nTF checks
whether the codepoint entered as argument (an integer that can be hexadecimal if preceded by ")
is in the range of "DC00 and "DFFF which means that it is the last part of a surrogate pair (a

18

low surrogate). The conditional function executes the true or false code depending on the evalua-
tion. The variants that only provide an argument for the true or false case work accordingly. The
command \jsonparse_unicode_if_low_surrogate_p:n returns a boolean true or false (i. e.
\c_true_bool or \c_false_bool).

\jsonparse_unicode_convert_surrogate_pair:nn {‹codepoint›} {‹codepoint›}
\jsonparse_unicode_convert_surrogate_pair:ee {‹codepoint›} {‹codepoint›}

The expandable command \jsonparse_unicode_convert_surrogate_pair:nn converts a
surrogate pair to the relevant Unicode codepoint. The returned value is an integer. It takes as first
argument the codepoint of the low surrogate and as second argument the codepoint of the high sur-
rogate. It doesnot checkwhether the codepoints actually belong to the relevant rangesof codepoints
for high and low surrogates.

10 Changes

v0.5.0 (2024/04/09) Changed from string token variables to token lists to support Unicode.

v0.5.6 (2024/04/11) Bug fixes, escaping of special chars added.

v0.5.7 (2024/04/14) Bug fixes, key-value option setting added.

v0.7.0 (2024/04/18) Renaming and rearranging of keys, escaping of special JSON escape sequences
added.

v0.7.1 (2024/04/20) Access to top-level keys of object added.

v0.8.0 (2024/04/24) Internal rewrite, escaping procedures changed.

v0.8.2 (2024/04/26) Bug fixes, externalizing parsed data.

v0.8.3 (2024/04/28) Escaping of characters with special meaning in TeX.

v0.9.0 (2024/08/27) Adaption to updated verbatim tokenization.

v0.9.1 (2024/09/21) Added functions to test for valid JSON numbers.

v0.9.3 (2024/10/24) Fixed a bug that prevented tabs in source from being parsed properly.

v0.9.6 (2024/10/31) Allowing for multiple return values whenmapping over arrays.

v0.9.8 (2024/11/19) Bug fixes; adding possibility to store value in token list.

v0.9.12 (2025/01/17) Bug fixes; adding commands to access items in arrays.

v1.0.1 (2025/01/21) Fixes in documentation. Added user command for filtering.

v1.0.2 (2025/01/23) Support for Unicode surrogate pairs.

v1.1.0 (2025/01/30) Unified names of user functions; renaming key for keywords.

v1.1.1 (2025/02/03) Added option to store result of mapped inline function.

v1.1.2 (2025/02/08) Added option to store result of array function.

v1.2.1 (2025/02/24) Unified functions, added option to store result globally.

v1.2.3 (2025/03/23) Enabled nesting of mapped inline function.

v1.3.0 (2025/03/25) Enhancements in key setting mechanism.

v1.4.0 (2025/04/10) Enhancements in parsing speed.

v1.5.0 (2025/04/20) Enhancements in parsing speed. Bug fixes.

19

	Introduction
	Loading the package
	General remarks of the parsing procedure
	Escaping and special treatment of the input
	Main user commands
	Basic parsing commands
	Commands for handling arrays

	Externalizing parsed JSON data
	Changing parsing and typesetting behavior via option keys
	Keys affecting the parsing procedure
	Keys affecting the typesetting

	Deprecated commands
	L3 commands
	Changes

